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Introduction

Brain-Computer Interfaces (BCI) can serve
as an important means of communication for
patients who can’t communicate otherwise,
due to paralysis or other severe motor
impairments. Our BCI system uses
electroencephalography (EEG) to detect
activity in the brain as a user is shown letters
on a screen, enabling them to spell words
and phrases. EEG signals are extremely
noisy and ambiguous.

Our system’s current language model falsely
assumes a deterministic character selection

history (1-best selection), so detection errors
propagate quickly.

Our Goal

Build an open-vocabulary language model
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Our online-context language model
(OCLM) explicitly models both word- and
character-level information. This allows it
to better account for a (potentially lengthy)
noisy character selection history (1).

The OCLM uses hypotheses about what
the user may have already typed (2a)
together with possible in-progress words
(2b, 3) to rank possible word completions
(4) using a word language model. We then
produce a weighted character lattice (5).

This Is combined with a standard
character language model (6), which we
then use to estimate probabilities for
subsequent character selections (7).
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